Single and Multiple Change Point Detection in Spike Trains: Comparison of Different CUSUM Methods
نویسندگان
چکیده
In a natural environment, sensory systems are faced with ever-changing stimuli that can occur, disappear or change their properties at any time. For the animal to react adequately the sensory systems must be able to detect changes in external stimuli based on its neuronal responses. Since the nervous system has no prior knowledge of the stimulus timing, changes in stimulus need to be inferred from the changes in neuronal activity, in particular increase or decrease of the spike rate, its variability, and shifted response latencies. From a mathematical point of view, this problem can be rephrased as detecting changes of statistical properties in a time series. In neuroscience, the CUSUM (cumulative sum) method has been applied to recorded neuronal responses for detecting a single stimulus change. Here, we investigate the applicability of the CUSUM approach for detecting single as well as multiple stimulus changes that induce increases or decreases in neuronal activity. Like the nervous system, our algorithm relies exclusively on previous neuronal population activities, without using knowledge about the timing or number of external stimulus changes. We apply our change point detection methods to experimental data obtained by multi-electrode recordings from turtle retinal ganglion cells, which react to changes in light stimulation with a range of typical neuronal activity patterns. We systematically examine how variations of mathematical assumptions (Poisson, Gaussian, and Gamma distributions) used for the algorithms may affect the detection of an unknown number of stimulus changes in our data and compare these CUSUM methods with the standard Rate Change method. Our results suggest which versions of the CUSUM algorithm could be useful for different types of specific data sets.
منابع مشابه
Bayesian change point estimation in Poisson-based control charts
Precise identification of the time when a process has changed enables process engineers to search for a potential special cause more effectively. In this paper, we develop change point estimation methods for a Poisson process in a Bayesian framework. We apply Bayesian hierarchical models to formulate the change point where there exists a step < /div> change, a linear trend and a known multip...
متن کاملModel-Based Decoding, Information Estimation, and Change-Point Detection Techniques for Multineuron Spike Trains
One of the central problems in systems neuroscience is to understand how neural spike trains convey sensory information. Decoding methods, which provide an explicit means for reading out the information contained in neural spike responses, offer a powerful set of tools for studying the neural coding problem. Here we develop several decoding methods based on point-process neural encoding models,...
متن کاملA multiple filter test for change point detection in renewal processes with varying variance
Non-stationarity of the event rate is a persistent problem in modeling time series of events, such as neuronal spike trains. Motivated by a variety of patterns in neurophysiological spike train recordings, we define a general class of renewal processes. This class is used to test the null hypothesis of stationary rate versus a wide alternative of renewal processes with finitely many rate change...
متن کاملModel-based decoding, information estimation, and change- point detection in multi-neuron spike trains
Understanding how stimulus information is encoded in spike trains is a central problem in computational neuroscience. Decoding methods provide an important tool for addressing this problem, by allowing us to explicitly read out the information contained in spike responses. Here we introduce several decoding methods based on point-process neural encoding models (i.e. “forward” models that predic...
متن کاملChange-point detection in neuronal spike train activity
Animals respond to changes in their environment based on the information encoded in neuronal spike activity. One key issue is to determine how quickly and reliably the system can detect that a behaviorally relevant change has taken place. What are the neural mechanisms and computational principles that allow fast, reliable detection of changes in spike activity? Here we present an optimal stati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2016